

SFA Modernization Partner
United States Department of Education

Student Financial Assistance

SFA Portal Strategy
Design Specification

2.p

Task Order #48

November 2, 2001

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 2 of 32

Table of Contents

1 ARCHITECTURE OVERVIEW ...1
1.1 INTRODUCTION ...1
1.2 THE ROLE OF APACHE STRUTS ...1
1.3 PORTLET ARCHITECTURE ...2
1.4 NAVIGATION SCHEMATICS ...5
1.5 INTEGRATION WITH BACKEND DATA SOURCES ..13
1.6 RCS COMMON SERVICES ...13

1.6.1 Exception Handling ..14
1.6.2 Logging...14
1.6.3 Persistence...14
1.6.4 Search..14

2 PORTLET DETAILED DESIGNS ..14
2.1 CALENDAR PORTLET WALKTHROUGH..14

2.1.1 Default State, Category = none...14
2.1.2 Selected State, Category = All, Events, Deadlines, Training or NPRMS16
Actions, Forms, Access Beans and Model Beans ..16

2.2 CALENDAR PORTLET ..17
2.2.1 Overview...17
2.2.2 Navigation...17
2.2.3 Actions, Forms and Form fields..19
2.2.4 Access Beans and Model Beans ...19

2.3 HORIZONTAL PORTAL AND SHARED HEADER ...20
2.3.1 Overview...20
2.3.2 Navigation...20
2.3.3 JSP’s and sfa tags..20
2.3.4 Actions, Forms and Form fields..20
2.3.5 Access Beans and Model Beans ...20

2.4 LOGIN PORTLET..21
2.4.1 Overview...21
2.4.2 Navigation...21
2.4.3 JSP’s and sfa tags..21
2.4.4 Actions, Forms and Form fields..21
2.4.5 Access Beans and Model Beans ...21

2.5 REGISTRATION PORTLET ..21
2.5.1 Overview...21
2.5.2 Navigation...21
2.5.3 JSP’s and sfa tags..22
2.5.4 Actions, Forms and Form fields..22
2.5.5 Access Beans and Model Beans ...22

2.6 PERSONALIZATION (BOOKMARKS) PORTLET ..22
2.6.1 Overview...22
2.6.2 Navigation...22
2.6.3 JSP’s and sfa tags..22

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 3 of 32

2.6.4 Actions, Forms and Form fields..22
2.6.5 Access Beans and Model Beans ...23

2.7 PERSONALIZATION (LINKS) PORTLET ...23
2.7.1 Overview...23
2.7.2 Navigation...23
2.7.3 JSP’s and sfa tags..23
2.7.4 Actions, Forms and Form fields..23
2.7.5 Access Beans and Model Beans ...23

2.8 HEADLINES PORTLET..23
2.8.1 Overview...23
2.8.2 Navigation...24
2.8.3 JSP’s and sfa tags..24
2.8.4 Actions, Forms and Form fields..24
2.8.5 Access Beans and Model Beans ...24

2.9 FEEDBACK PORTLET ...24
2.9.1 Overview...24
2.9.2 Navigation...24
2.9.3 JSP’s and sfa tags..24
2.9.4 Actions, Forms and Form fields..24
2.9.5 View beans and presentation helper beans ...24
2.9.6 Access Beans and Model Beans ...24

2.10 SEARCH PORTLET ...24
2.10.1 Overview...24
2.10.2 Navigation...24
2.10.3 JSP’s and sfa tags..25

3 THE SFA PORTAL CUSTOM TAG LIBRARY..25
3.1 INTRODUCTION ...25
3.2 HOW TAG LIBRARIES WORK ..25
3.3 TAG HANDLERS ..26

4 BIBLIOGRAPHY ..29

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 1 of 32

1 Architecture Overview

1.1 Introduction
This document explains the design for the SFA Portal Strategy Task Order #48. The intended audience is the
project managers and developers for Task Order #48. The pre-requisites for understanding this document are:
• Understanding of the control flow and function of the current version of the SFA Portal Web site.
• Understanding of Web Sphere technology in general.
• Understanding of Struts technology in general.
• Understanding of SFA Portal Strategy Portal Software Architecture (#48.1.1)

1.2 The Role of Apache Struts
The J2EE APIs provide a flexible set of facilities for building Web-based applications. However, faced with the
wide set of design alternatives available, the problem is that developers are too often faced with “reinventing the
wheel” each time they begin building a new web-based application. Such applications become difficult to develop,
as well as extend and maintain.

There are a number of common problems that must be solved in every project [ref 1.]:
• Mapping HTTP parameters to JavaBeans—One of the most common tasks facing servlet programmers is to

map a set of HTTP parameters (from the command line or from the POST of an HTML form) to a JavaBean for
manipulation. This can be done using the <jsp:useBean>and <jsp:setProperty>tags, but this arrangement is
cumbersome as it requires POSTing to a JSP, something that is not encouraged in a Model-II Model View
Controller architecture.

• Validation—There is no standard way in servlet/JSP programming to validate that an HTML form is filled in
correctly. This leaves every servlet programmer to develop his own validation procedures, or not, as is too often
the case.

• Error display—There is no standard way to display error messages in a JSP page or generate error messages in a
servlet.

• Message internationalization—Even when developers strive to keep as much of the HTML as possible in JSPs,
there are often hidden obstacles to internationalization spread throughout servlet and model code in the form of
short error or informational messages. While it is possible to introduce internationalization with the use of Java
resource managers, this is rarely done due to the complexity of adding these references.

• Hard coded JSP URIs—One of the more insidious problems in a servlet architecture is that the URIs of the JSP
pages are usually coded directly into the code of the calling servlet in the form of a static string reference used
in the ServletContext.getRequestDispatcher() method. This means that it is impossible to reorganize the JSPs in
a Web site, or even change their names, without updating Java code in the servlets.

Apache Struts addresses these and other issues by providing an framework that isolates and encapsulates each of the
model, view and control components of a Web application as described by the following diagram.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 2 of 32

SFA Portlet Design in the Struts
Framework Browser

Request Response

Server
Controller

Controls the execution
flow of the application

-

Web.xml Servlet mappings

Business Objects
Mapped to backend datastores

(RCS Persistence)

Model
Maintains State

Calendar, Headlines, Links, User
Personalization, View Settings

Created from Business Objects using Model Factories

Resource
Properties

File

Custom
Tag Libraries

View
Controls markup of

presentation
Struts-Config.xml

Figure 1 SFA Portlet Design in the Struts Framework

Struts, part of the Jakarta Project sponsored by the Apache Software Foundation, is an open source framework used
in building Web applications with Java Servlet and Java Servlet Pages (JSP) technology using the model-view-
controller (MVC) design paradigm. It provides a standard set of classes and interfaces and includes the following
areas of functionality:
• A controller servlet that dispatches requests to appropriate Action classes provided by the application developer.
• JSP Custom Tag libraries, and associated support in the controller servlet, that assists developers in creating

interactive form-based applications.
• Utility classes to support XML parsing, automatic population of JavaBeans properties based on the Java

reflection APIs and internationalization of prompt and messages.

1.3 Portlet Architecture
Each portlet in a horizontal portal is generally a separate MVC application, loosely linked to the overall portal by
ancillary requirements, such as security and visual integration (common look and feel). For productivity purposes it
is desirable to partition the work so that a team of developers can work on portlets independently. Key to this is to
have a framework available that provides a common set of MVC facilities, including:

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 3 of 32

• A navigation framework, which standardizes the mechanism used to route request processors and the target of
those requests (JSP or HTML). In Struts the request processors are termed Actions.

• JSP Tag Libraries, which simplify the development of the portlet JSPs, since they reduce the amount of JSP
scripting that needs to be provided. Struts provides a number of Custom Tag libraries. For example, the tag
library eases specification of HTML forms by providing a set of message display facilities, buttons, and other
forms-based visual controls. Portlet developers may further extend the set of tags to provide enhanced
functionality as well as common look and feel between portlets.

• A simple means of binding portlet JSP parameters to Actions by means of some Java Bean having a set of
properties, each one corresponding to an HTML form or query parameter. In Struts the parameter-binding
object is termed a Form. In addition, Struts provides a standardized validation mechanism for HTML form
parameters, very useful in forms intensive portlets.

Using Struts, the portlet developer’s role is thus greatly simplified to providing Struts Actions, Forms, JSPs and JSP
tags and integrating them by developing some additional Java Beans. See Figure 2 Portlet Beans.

Access Bean

View
Bean

Model
Bean

Model
Factory

Figure 2 Portlet Beans

• Access Beans - In the web-based MVC paradigm, Struts Actions pass information to JSPs by placing Java
Beans in the HttpRequest or Session object. The JSP retrieves these beans and has access to the required
information in the bean properties. These beans are termed access beans since they allow JSPs access to
information retrieved from the middle-ware. Note that these beans are passive, in the sense that they do not
themselves interact with middle-ware, but generally consist of a set of properties, holding data only - in
accordance with the MVC paradigm, all access to middle-ware is done in the Action object, not the JSP. Access
beans usually contain properties or arrays of properties of type java.lang.String, or single or array references to
other access beans, sometimes forming graphs of interconnected beans.

• View Beans - These are special kinds of access beans that are directly responsible for rendering HTML to the
browser. They are used to emit a set of complex HTML such as the calendar tabular view or calendar header
and can be thought of as visual ‘widgets’. View beans have a naming convention, ending with ‘View’, e.g.
SFACalendarView.

• Model Beans - These form the ‘Model’ part of the MVC paradigm. They generally contain business information
of some kind, such as array collections of other beans holding dates and HTML links, and user information.
This information often originates from some back-end data source such as a relational, XML or LDAP
datastore. Some model beans can also be used as access beans, in that they may be passed to JSPs for
presentation purposes. Others have methods that are used for computation purposes in the Action object. Model
Beans have a RCS naming convention, ending with ‘BO’, e.g. SFACalendarBO.

• Model Factories - Model beans come into existence in different ways; some via ‘Factory’ classes, and others
using constructors. Most of the time model beans contain information retrieved from back-end data stores such

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 4 of 32

as relational or XML data stores, or LDAP. The Bridge Pattern is used to separate the knowledge of the
retrieval mechanism from the model bean itself. All retrieval of model data is done in a Model Factory class,
using ‘find’ or ‘create’ methods. Model bean factories have a naming convention, ending with ‘Factory’, e.g.
SFACalendarBOFactory. See Integration with Backend Data Sources for additional discussion of Model
beans and Factories, and an example of their use.

To summarize, Struts implements the MVC presentation layer with JSPs, Form objects, Action objects and Access
beans. Access beans used in the JSPs do not interact with middle ware. All such interaction is done in the Action
object, most often via Factory objects.

The impact of restricting the kinds of beans used in the JSP to access beans is that the initial starting point for a
portlet should be from an Action object, not a JSP, since in many cases (e.g. calendar), the initial view requires
retrieved data to be displayed.

View beans are directly responsible for rendering to the browser. In many cases, they work in the following way.
They have methods for setting internal state – these methods are invoked within the Action object that works
together with the middle ware access beans to retrieve back-end data. The view beans are then forwarded to the
appropriate JSP in the HttpRequest object. The view beans have one or more ‘emit’ methods to emit HTML to the
Action object’s output stream dependant on the state that has been set. We will walk though an example later on of
the kind of HTML that needs to be emitted.

In most cases all the portlet JSP needs to do is to call the appropriate emit method in the appropriate location in the
JSP. These calls are done using set of custom JSP tags, making writing the portlet JSPs extremely simple.

Other access beans may be kept in the HttpSession if necessary. One of these is discussed, as an example later, the
SFACalendar bean, which needs to maintain state relating to the current date or date last-selected in the Calendar
Portlet.

The SFA Portal site is composed of a horizontal portal, implemented as a frameset, linking to a set of individual
vertical portlet action objects.

The frameset references the action object in the following fashion. Example for the Calendar Portlet is given below.

<FRAME src="/sfaportal/processCalendar.do?submit=+">

This is analogous to invoking a servlet from the frameset.

The Struts Action Framework transfers control to the ProcessCalendarAction object, passing query parameters via
the CalendarForm object.

Each of the action objects when invoked in default state will forward to the associated default portlet JSP, which
will render the initial state of each portlet page. See table below.

Table 1 Default action objects and JSPs

Portlet Default action object Default JSP
Horizontal Portal DisplayHeaderAction header.jsp
Calendar ProcessCalendarAction calendar.jsp
Login DisplayLogonAction logon.jsp
Registration DisplayLogonAction registration.jsp
Personalization DisplayLogonAction personalize.jsp
Links DisplayLinksAction links.jsp
Headlines DisplayHeadlineAction headlines.jsp
Search DisplaySearchAction search.html

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 5 of 32

All the portlet JSPs are written using a combination of:
• HTML
• Struts tags
• SFA custom tags.
• JSP scriptlet code. However there is very little, if any, JSP scriptlet code in most JSP pages.

1.4 Navigation Schematics
The set of Actions and Forms for the horizontal portal and each portlet contained within, and the way they relate to
the flow of control to/from the JSPs are shown schematically in the figures below. (These are further discussed in
Section 2 Portlet Detailed Designs where the tags and view beans are also described.)

Display
Header
Action

header.jsp

Figure 3 Portal Shared Header Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 6 of 32

LogonForm

Logoff
Action

Logon
Action

LogonForm

logon.jsp
verify _logon.jsp

personalize.jsp

Display
Logon
Action

Figure 4 Login Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 7 of 32

Edit
Registration

Action

Save
Registration

Action

personalize.jsp

change_password.jsp

ChangePasswordForm

registration.jsp

Save
Registration

Action

RegistrationForm

logon.jsp
register.jsp

Edit
Registration

Action

Figure 5 Registration Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 8 of 32

Process
Bookmarks

Action

BookmarkForm

bookmarks_edit.jsp

personalize.jsp

Figure 6 Personalization (Bookmarks) Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 9 of 32

Process
Links
Action

Apply

personalize.jsp

links.jsp

Display
Links
Action

linksedit.jsp

Figure 7 Personalization (Links) Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 10 of 32

Process
Calendar

Action

CalendarForm

calendar.jsp

calendar _categories.jsp

Figure 8 Calendar Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 11 of 32

headlines.jsp

headline _archives.jsp

Display
Headlines

Action

Process
Headlines

Action

Figure 9 Headlines Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 12 of 32

search.jsp

query.jsp

search.htm
Display
Search
Action

Process
Query
Action

Process
Search
Action

SearchForm

Figure 10 Search Portlet Navigation Schematic

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 13 of 32

1.5 Integration with Backend Data Sources
The key integration point with back end data sources is in the Model Bean and the Model Bean Factory.

As discussed above Model beans are used to hold information originating from back-end data- sources. The model
bean’s factory is responsible for creating or finding the data via create or finder methods. The model bean, as well as
holding such data in single or arrayed properties, often has references to other beans, some of which are themselves
model beans, forming graphs of beans.

As an example consider the relationship between SFACalendarBO, its Factory class and the other access beans
which it encapsulates.

• SFACalendarBOFactory is used to create SFACalendarBO via the static createSFACalendarBO method. There

is an association between SFACalendarBO and Calendardate.
• Calendardate holds a String date property. There is an association between Calendardate and Calendar

(Calendar category).
• Calendarcat holds a String category name. There is an association between Calendarcat and Calendarlink.
• Calendarlink holds the category name, href and link title.

The Model beans and access beans have no part in the creation or finding process. The sole repository of knowledge
regarding how to find or create a model object and its associated access beans is its factory class. Thus to modify the
back-end access method, it is required is to change SFACalendarBOFactory from the one which accesses XML data
sources to that which accesses relational datastores.

1.6 RCS Common Services
Phase 2 Development will use the following RCS components.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 14 of 32

1.6.1 Exception Handling
The RCS Exception Handling component provides a framework for creating a special class of exception,
SFAException. This class has methods for setting priorities not found in the java.lang.Exception class, such as the
originating method name, class name, error code, and so on. The exception is created via a singleton factory object.

Using the RCS Exception handling framework in application code where new types of exceptions are needed is
straightforward. These exceptions can be made to extend SFAException. However, in certain cases some exceptions
already extend a base class. For example the exceptions used in the Custom Tag Handlers must be of type
JspException. SFAException cannot be used in these cases.

1.6.2 Logging
The RCS Logging framework will be used to log messages via the Syslog class throughout the servlet code.

1.6.3 Persistence
The RCS persistence framework will be used in the SFA Model Factories.

1.6.4 Search
The RCS search framework will replace the current SFA CGI search function.

2 Portlet Detailed Designs
To clarify the use of Struts in building portlets, a detailed walk through of the Calendar Portlet will be presented
followed by the itemized specifications of each of the other portlets.

2.1 Calendar Portlet Walkthrough

2.1.1 Default State, Category = none
In default state, the Calendar Portlet renders itself like this without a border around the heading or tabular calendar
and the list view is placed on the right by the JSP HTML markup.
:-

The corresponding calendar.jsp looks like this:-

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 15 of 32

Explanation:
• Line 2 refers to the sfa Custom Tag library descriptor, further discussed in 3 The sfaportal Custom Tag

Library.
• Line 13. This is for displaying error messages such as “A database connectivity error has occurred. Please

contact the Administrator.”
• Line 14. The sfa view bean declaration causes the CalendarView bean to be retrieved from the HttpRequest

object and its emitHeader method to be called. See discussion below for what is emitted.
• Line 18. The SFACalendarView bean’s emitBody method is called.
• Lines 21-30. These are Struts Custom Tags, which output hierarchically organized dates, categories, and

calendar links.
• The rest of the JSP is HTML markup, for example the definition of table cells to position the tabular calendar

and the HTML links in relation to one another.

The SFACalendarView emitHeader method emits the table of horizontal link elements, such as:-

<td width="105" align="center">
<a target="main"
href="/sfaportal/processCalendar.do?category=events&submit=+"> Events</td>

The parameters passed to the ProcessCalendarAction bean via CalendarForm are discussed further below in the
Calendar detail design section.

01: <%@ page language="java" %>
02: <%@ taglib uri="/WEB-INF/sfaportal-sfa.tld" prefix="sfa"%>
03: <%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
04: <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
05: <%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
06:
07: <html:html locale="false">
08: <head>
09: <title>Calendar Window Contents</title>
10: <base target="_top"></base>
11: </head>
12: <body>
13: <html:errors/>
14: <sfa:viewbean name="SFACalendarView" emit="header"/>
15: <table>
16: <tr>
17: <td width="60%">
18: <sfa:viewbean name="SFACalendarView" emit="body"/>
19: </td>
20: <td width="40%">
21: <logic:iterate id="calendardate" name="sfacalendarmodel" property="calendardates">
22: <bean:write name="calendardate" property="cdate" filter="true"/>

23: <logic:iterate id="calendarcat" name="calendardate" property="calendarcats">
24: <bean:write name="calendarcat" property="cat" filter="true"/>

25: <logic:iterate id="calendarlink" name="calendarcat" property="calendarlinks">
26: <a href="<bean:write name="calendarlink" property="href"

filter="true"/>">
27: <bean:write name="calendarlink" property="title" filter="true"/>

28: </logic:iterate>
29: </logic:iterate>
30: </logic:iterate>
31: </td>
32: </tr>
33: </table>
34: </body>

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 16 of 32

2.1.2 Selected State, Category = All, Events, Deadlines, Training or NPRMS
The format depends on the category parameter used when the HTML is initially emitted. In the category = events,
deadlines, training or nprms, the heading looks like this:

In the category = all case, the heading looks like this.

Also the tabular view has a border and the list view is placed on the left by the JSP HTML markup as follows.

2.1.3 Actions, Forms, Access Beans and Model Beans
When the user clicks on a link or submit button, the GET or POST request is routed via the Struts framework to the
Action object associated with the request, and the associated perform method is invoked, passing the ActionForm
containing the parameters passed in the form or query string. This eliminates the need to parse the HttpRequest for
parameters. There is an optional validate operation, which Struts provides, that can be invoked on the form to verify
the integrity of the input.

The logic in the process method usually will create or retrieve the appropriate model bean and call methods to create
the view bean and insert it in the HttpRequest object to be forwarded to the JSP.

For example, in the case of the Calendar Portlet, the ProcessCalendarAction process() method is invoked.
The SFACalendar bean is retrieved from the HttpSession, and the SFACalendar’s date property, together with the
category parameter passed via the CalendarForm, and some other parameters are used to determine what HTML
header and body script needs to be emitted. Emitting of the appropriate HTML is done with the help of the
SFACalendarEmitter in collaboration with the SFADateFormatterModel bean.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 17 of 32

2.2 Calendar Portlet

2.2.1 Overview
The calendar portlet displays a tabular calendar view and detail for the selected day. Selection of a new day or
next/previous month with the current day displays the detail HTML links for the selected day. The portlet also
allows selection of items: Events, Deadlines, Training and NPRMs and All-items. Selecting one of these opens a
new view in the horizontal portal, displaying a tabular calendar view and items for the month. These items may be
individually selected. They are static HTML links and open a new browser window to display their content.

2.2.2 Navigation
Refer to Figure 8 Calendar Portlet Navigation Schematic showing the flow from selected links and buttons to the
appropriate action objects. The actions in turn receive input from the specified forms, and route to the JSPs. Static
links are not shown.

The calendar portlet consists essentially of two views, the Default view rendered in-place in the portlet frameset.
This is rendered by calendar.jsp.

This default view is essentially a no-categories view. Certain selected links (such as next/previous month, and
specific dates) pass the parameter category=none, to the ProcessCalendarAction object. Of course, they also pass
additional parameters indicating the nature of the link, such as prev, next, or date.

Other links, such as one of the categories selected in the header section (Events, Deadlines, Training, NPRMs), or
the Month-Year - equivalent to all-categories, pass one of the parameter category= events | deadlines | training |
nprms | all. This forwards to the calendar_categories jsp, which we will discuss below.

One last point. Selecting one of the static links such as New FAA Training, does not route via Struts since it is a
conventional static HTML link.

The second view is the Categories view. This is handled by calendar_categories.jsp

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 18 of 32

The only state information maintained between and within these views is the date. For example, in the Default view,
selecting the next or previous month leaves the same date in each month selected (shown highlighted). Transitioning
from the default view to the Categories view by selecting one of the categories on the top header, or the month/year
in the tabular calendar, displays the categories for the selected month. There is an access bean to hold this state, kept
in the HttpSession, called SFACalendar. It has a single property called date.

Similar to the Default view, selecting static links operates in the normal HTML mode.

Table 2 Explaining how the CalendarForm parameters are used

Source Page Action Form Parameters Destination Page
Calendar.jsp > category=none

next=true
calendar.jsp

Calendar.jsp < category=none
prev=true

calendar.jsp

Calendar.jsp 1, 2, 3… category=none
date=yyyy/mm/dd

calendar.jsp

Calendar.jsp Month Year category=all calendar_categories.jsp
Calendar.jsp Events category=events calendar_categories.jsp
Calendar.jsp Deadlines category=deadlines calendar_categories.jsp
Calendar.jsp Training category=training calendar_categories.jsp
Calendar.jsp Nprms category=nprms calendar_categories.jsp

Calendar_categories.jsp > category=<current category>

next=true
calendar_categories.jsp

Calendar_categories.jsp < category=<current category>
prev=true

calendar_categories.jsp

Calendar_categories.jsp Month Year category=all calendar_categories.jsp
Calendar_categories.jsp Events category=events calendar_categories.jsp
Calendar_categories.jsp Deadlines category=deadlines calendar_categories.jsp
Calendar_categories.jsp Training category=training calendar_categories.jsp

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 19 of 32

Source Page Action Form Parameters Destination Page
Calendar_categories.jsp Nprms category=nprms calendar_categories.jsp

JSP’s and sfa tags

• calendar.jsp

• sfa:viewbean
• name=SFACalendarView
• emit=header | body

• calendar_categories.jsp
• sfa:viewbean

• name=SFACalendarView
• emit=header | body

2.2.3 Actions, Forms and Form fields
• ProcessCalendarAction

• CalendarForm

2.2.4 Access Beans and Model Beans

• SFACalendarView

• SFACalendar

date:
yyyy/mm/dd

category:
none, events, deadlines,
training, nprms, all,
[empty=none

ProcessCalendarAction

CalendarForm
category : String
prev : Boolean
next : Boolean
date : String

SFACalendarView

emittedHeader : String
emittedBody : String
category : String

emitHeader()
emitBody()

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 20 of 32

• SFACalendarEmitter
• SFADateFormatterModel
• SFACalendarBO
• SFACalendarBOFactory
• Calendardate
• Calendarcat
• Calendarlink

2.3 Horizontal Portal and Shared Header

2.3.1 Overview
The horizontal Portal consists of a set of HTML frames and a shared header. The appearance of the header changes
depending in whether the user is logged in or not.

2.3.2 Navigation
Refer to Figure 3 Portal Shared Header Navigation Schematic showing the flow from selected links and buttons to
the appropriate action objects. The actions in turn receive input from the specified forms, and route to the JSPs.
Static links are not shown.

2.3.3 JSP’s and sfa tags
• header.jsp

• sfa:viewbean
• name = SFAHeaderView <Note this session scoped viewbean emits the images and link:>

2.3.4 Actions, Forms and Form fields
• DisplayHeaderAction

2.3.5 Access Beans and Model Beans
• SFAHeaderView

SFACalendar

date : Date

getCalendarView()
nextMonth()
prevMonth()

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 21 of 32

2.4 Login Portlet

2.4.1 Overview
The Login Portlet presents a logon view, allowing the user to enter username, password, and if registered, redisplays
the portal in logged-on state. This replaces the ‘Home’ image in the shared header with the ‘My SFA’ image, also
placing a link just below the image allowing the user to log off.

Attempting to log on with an unregistered username or incorrect password displays a dialog to correct these inputs.

The logon view also displays a link allowing a new user to register. This is further discussed in the Registration
Portlet section below.

In logged-on state, the logon view in the portal is replaced with a view with links allowing customization of links
and bookmarks. These are discussed in the Personalization Portlet section below. There is also a link allowing
password change, which is part of the login portlet.

2.4.2 Navigation
Refer to Figure 4 Login Portlet Navigation Schematic showing the flow from selected links and buttons to the
appropriate action objects. The actions in turn receive input from the specified forms, and route to the JSPs. Static
links are not shown.

2.4.3 JSP’s and sfa tags
• logon.jsp
• personalize.jsp

2.4.4 Actions, Forms and Form fields
• DisplayLogonAction
• LogonAction

• LogonForm
• Username
• Password

• LogoffAction

2.4.5 Access Beans and Model Beans
• SFAUserBO
• SFAUserBOFactory

2.5 Registration Portlet

2.5.1 Overview
The Registration Portlet allows either a non logged on user to create a new registration and logon or a currently
logged on user to edit their registration information.

2.5.2 Navigation
Refer to Figure 5 Registration Portlet Navigation Schematic showing the flow from selected links and buttons to
the appropriate action objects. They in turn receive input from the specified forms, and route to the JSPs. Static links
are not shown.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 22 of 32

2.5.3 JSP’s and sfa tags
• registration.jsp

2.5.4 Actions, Forms and Form fields
• EditRegistrationAction

• RegistrationForm
• Action
• Username
• Password
• Password2
• Fullname
• EmailAddress

• SaveRegistrationAction
• RegistrationForm

• Action
• Username
• Password
• Password2
• Fullname
• EmailAddress

2.5.5 Access Beans and Model Beans
• SFAUserBO
• SFAUserBOFactory

2.6 Personalization (Bookmarks) Portlet

2.6.1 Overview
The Bookmarks Personalization Portlet allows a user to edit, delete or add new personal bookmarks that will be
displayed on the SFA links page when they are logged on.

2.6.2 Navigation
Refer to Figure 6 Personalization (Bookmarks) Portlet Navigation Schematic showing the flow from selected links
and buttons to the appropriate action objects. They in turn receive input from the specified forms, and route to the
JSPs. Static links are not shown.

2.6.3 JSP’s and sfa tags
• bookmarksedit.jsp

• sfa:linklink
• page=/editBookmarks.do?action=Edit | /editBookmarks.do?action=Delete |

/editBookmarks.do?action=Create
• parmname=bookmarkForm

• booksmarkedit.jsp

2.6.4 Actions, Forms and Form fields
• EditBookmarkAction

• BookmarkForm
• Action
• Href
• Title

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 23 of 32

• SaveBookmarkAction
• BookmarkForm

• Action
• Href
• Title

2.6.5 Access Beans and Model Beans
• SFABookmarkBO
• SFABookmarkBOFactory

2.7 Personalization (Links) Portlet

2.7.1 Overview
The Links Personalization Portlet allows a user to customize which SFA links will be displayed on the SFA links
page when they are logged on.

2.7.2 Navigation
Refer to Figure 7 Personalization (Links) Portlet Navigation Schematic showing the flow from selected links and
buttons to the appropriate action objects. They in turn receive input from the specified forms, and route to the JSPs.
Static links are not shown.

2.7.3 JSP’s and sfa tags
• Linksedit.jsp

• sfa:linklink
• page=/editLinks.do?action=Delete | /editLinks.do?action=Create

2.7.4 Actions, Forms and Form fields
• EditLinkAction

• LinkmarkForm
• Action
• Href
• Title

• SaveLinkAction
• LinkmarkForm

• Action
• Href
• Title

2.7.5 Access Beans and Model Beans
• SFASystemLinksBO
• SFASystemLinksFactory

2.8 Headlines Portlet

2.8.1 Overview
The Headlines Portlet either displays the current day’s SFA headlines or allow a user to request a display of all
archived SFA headlines.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 24 of 32

2.8.2 Navigation
Refer to Figure 9 Headlines Portlet Navigation Schematic showing the flow from selected links and buttons to the
appropriate action objects. They in turn receive input from the specified forms, and route to the JSPs. Static links are
not shown.

2.8.3 JSP’s and sfa tags
• Headlines.jsp

2.8.4 Actions, Forms and Form fields
• DisplayHeadlinesAction

2.8.5 Access Beans and Model Beans
• SFAHeadlineBO
• SFAHeadlineBOFactory

2.9 Feedback Portlet

2.9.1 Overview

2.9.2 Navigation
The Feedback Portlet provides access via a static HTML link to a help page.

2.9.3 JSP’s and sfa tags
There are no JSP’s and sfa tags required for the Feedback Portlet.

2.9.4 Actions, Forms and Form fields
There are no actions, forms and form fields required for the Feedback Portlet.

2.9.5 View beans and presentation helper beans
There are no View beans and presentation beans required for the Feedback Portlet.

2.9.6 Access Beans and Model Beans
There are no Access or Model beans required for the Feedback Portlet.

2.10Search Portlet

2.10.1 Overview
The Search Portlet allows simple search or advanced search. The latter allows the entry of search terms and selection
of those sites against which the search should be performed.

Submitting the search in either case invokes a query on the Autonomy Search engine via the RCS tag interface. All
presentation and functions is implemented via the RCS tag interface.

2.10.2 Navigation
Refer to Figure 10 Search Portlet Navigation Schematic showing the flow from selected links and buttons to the
appropriate action objects. They in turn receive input from the specified forms, and route to the JSPs. Static links are
not shown.

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 25 of 32

2.10.3 JSP’s and sfa tags
• search.htm
• searchadvanced.jsp
• searchresults.jsp
• searchsuggest.sjp

3 The SFA Portal Custom Tag Library

3.1 Introduction
A key advantage of JSP is its ability to separate presentation from implementation through the use of HTML-like
tags. By reducing the use of JSP elements that embed scripting language code in the page through the use of custom
tags, maintenance of JSP pages is greatly simplified, and the opportunity to reuse the Java code that provides the
underlying functionality is preserved.

Custom tags are explicitly designed to add functionality to JSP pages, including the dynamic generation of page
content such as HTML. In general custom tags can be used to insert text into a page, and also to implement flow of
control. Attributes can be specified for custom tags, as parameters that influence their behavior. Custom tags can be
empty or have bodies, which contain either nested JSP elements (including other custom tags) or tag specific content
to be processed by the tag itself. Custom tags can also interact with each other, either by requesting information
through the hierarchy of nested tags, or by introducing new scripting variables, which may be accessed by
subsequent custom tags, as well as be the standard JSP scripting elements.

3.2 How tag libraries work
A JSP page that uses custom tags must first load the libraries containing those custom tags by means of the taglib
directive. Two attributes must be specified with this directive, a URI indicating the location of the TLD file for the
library, and a string specifying a page-specific XML namespace for the library’s tags.
For example, see line 1 of Figure 1 calendar.jsp tag directives. Here the URI is “/WEB-INF/sfaportal-
sfa.tld”, and the namespace prefix is “sfa”.

Figure 11 calendar.jsp tag directives

The tag library descriptor (TLD) file itself is an XML document. See Figure 2 sfaportal-sfa.tld.

01: <%@ page language="java" %>
02: <%@ taglib uri="/WEB-INF/sfaportal-sfa.tld" prefix="sfa"%>
03: <%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
04: <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
05: <%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
06:
07: <html:html locale="false">
08: <head>
09: <title>Calendar Window Contents</title>
10: <base target="_top"></base>
11: </head>
12: <body>
13: <html:errors/>
14: <sfa:viewbean name="SFACalendarView" emit="header"/>
15: <table>
16: <tr>
17: <td width="60%">
18: <sfa:viewbean name="SFACalendarView" emit="body"/>
19: </td>

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 26 of 32

As in line 10, we see there is one <tag> element for each custom tag defined in the library. The tags defined in this
case, is that for a viewbean.

Line 12 specifies the tagclass. In this case it is sfa.jsp.tags.BeanTag, which is the Java class used to process
the tag.

In line 13, the body content is designated EMPTY. XML attributes are used to specify information for the viewbean,
and thus the XML element body is not required.

Figure 12 sfaportal-sfa.tld

The viewbean has a mandatory name attribute specified in line 16 – this is why it is marked as required in the tld.

Depending on the name supplied, there are a set of additional attributes which specify the viewbean tag function.
These are not validated by the XML parser, as is the name attribute, but need to be checked by the classes
processing those viewbeans. For example, for the viewbean where name=SFACalendarView the emit attribute is not
mandatory, but is checked for by the SFACalendarViewbeanProcessor Class, as described below.

3.3 Tag Handlers
Custom tags are implemented via Java objects. The tagclass element is used to specify the class that implements the
handler for the tag, fully qualified with its package name. sfa.jsp.tags.ViewbeanTag implements the SFA custom
viewbean tags and extends the javax.servlet.jsp.tagext.TagSupport class.

01: <?xml version="1.0" encoding="ISO-8859-1" ?>
02: <!DOCTYPE taglib
03: PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
04: <taglib>
05: <tlibversion>1.0</tlibversion>
06: <jspversion>1.1</jspversion>
07: <shortname>sfa</shortname>
08: <info>SFA Portlet Tag Library.</info>
09:
10: <tag>
11: <name>viewbean</name>
12: <tagclass>sfa.jsp.tags.BeanTag</tagclass>
13: <bodycontent>EMPTY</bodycontent>
14: <info>Portlet Viewbean Tag</info>
15: <attribute>
16: <name>name</name>
17: <required>true</required>
18: <rtexprvalue>false</rtexprvalue>
19: </attribute>
20: <attribute>
21: <name>emit</name>
22: <required>false</required>
23: <rtexprvalue>false</rtexprvalue>
24: </attribute>
25: </tag>
26: </taglib>

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 27 of 32

The life cycle of a tag handler implementing the Tag interface is shown in Figure 3 [ref 4.]. By the time the

doStartTag method is called, the tag attributes have been set. doStartTag is where the tag processing takes place. The
ViewbeanTag class’s doStartTag method returns SKIP_BODY, since the tag body is empty and does not require to
be processed. ViewbeanTag has access to the jsp PageContext, and is therefore able to access the important
properties required to process JSPs including the request, response and session objects.

Figure 13 Life cycle of handlers implementing the tag interface

The Viewbean doStartTag method creates an instance of a class implementing the TagViewbeanProcessor interface
using the abstract factory design pattern. The TagViewbeanProcessor itself is an example of the Command design

EVAL_BODY_INCLUDE

Obtain
Handler

Set
properties

Set attribute
values

doStartTag()

doEndTag()

Process
body

release() release()

Continue Stop

setPageContext()
setParent()

SKIP_BODY

SKIP_PAGE EVAL_PAGE

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 28 of 32

pattern. It’s execute method implements the work required by the bean. For example, the
SFACalendarViewbeanProcessor execute method calls emitHeader() or emitBody() on the SFACalendarViewbean
itself.

The use of the abstract factory together with the command design pattern allow additional viewbean processors to be
rapidly implemented. Figure 4 shows the sequence diagram of ViewbeanTag interacting with
TagViewbeanProcessorFactory, and executing an instance of a ViewBeanProcessor command.

Figure 14 Tag Viewbean Processor Sequence Diagram

U.S. DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE PORTAL STRATEGY
SFA MODERNIZATION PARTNER DESIGN SPECIFICATION

TO48_Portal_Strategy_Design_Spec_Revised.doc Page 29 of 32

4 Bibliography

1. The official Struts home page: http://jakarta.apache.org/struts
2. The official Struts user guide: http://jakarta.apache.org/struts/userGuide/index.html
3. Kyle Brown, Apache Struts and VisualAge for Java, Part 1: Building Web-based Applications using Apache

Struts (on VisualAge Developer Domain):
http://www7.software.ibm.com/vad.nsf/data/document2558?OpenDocument&p=1&BCT=1&Footer=1

4. Kyle Brown, Apache Struts and VisualAge for Java, Part 2: Using Struts in VisualAge for Java 3.5.2 and
3.5.3: http://www7.software.ibm.com/vad.nsf/Data/Document2557?OpenDocument&SubMast=1

5. Duane Fields, Web Development with Java Server Pages. Manning Publications - 2000

